http://www.elrincondelingeniero.com/

A) Calculation of EDSI, IDSI and DSI

$E D S I=4-3=1$
$I D O F=3(10-1)=27$
$I L=2(2-1)+3[2(3-1)]+2[2(4-1)]=26$
$I D S I=26-27=-1$
DSI $=1-1=0$

DSI can be also calculated as it can be seen below:
$D S I=10+4-2 * 7=0$

* 10 beams
* 7 hinge joints
* 4 Reactions

Thus the structure is stable and determinate

B) Calculation of the reactions

$$
\begin{aligned}
& \sum F_{x}=0 \Rightarrow H_{1}=4 k N \\
& \sum F_{y}=0 \Rightarrow V_{1}+V_{2}=6 \\
& \sum M_{1}=12 V_{7}-6.8+4.3=0
\end{aligned}
$$

$$
\begin{aligned}
& V_{1}=3 \mathrm{kN} \\
& V_{2}=3 \mathrm{kN}
\end{aligned}
$$

C) Force equilibrium in node 7

$$
N_{67}=3 \mathrm{kN}(C)
$$

C) Force equilibrium in node 6

Using these expressions the following results are obtained:

$$
\begin{aligned}
& N_{56}=4 k N(C) \\
& N_{64}=5 k N(T)
\end{aligned}
$$

C) Force equilibrium in node 5

$$
\begin{array}{ll}
\sum F_{x}=0 & N_{35}=4 k N(C) \\
\sum F_{y}=0 & N_{54}=6 k N(C)
\end{array}
$$

C) Force equilibrium in node 4

Using these expressions the following results are obtained:
$\sum F_{x}=0 N_{34} \cos \alpha+N_{24}-5 \cos \alpha=0$
$\sum F_{y}=0 N_{34} \sin \alpha-6+5 \sin \alpha=0$

$$
\begin{aligned}
& N_{34}=5 k N(T) \\
& N_{24}=0 k N
\end{aligned}
$$

C) Force equilibrium in node 3

Using these expressions the following results are obtained:

$$
\begin{aligned}
& \sum F_{x}=0 \quad N_{31}+4-5 \cos \alpha=0 \\
& \sum F_{y}=0 \quad N_{23}+5 \sin \alpha=0
\end{aligned}
$$

$$
\begin{aligned}
& N_{31}=0 \mathrm{kN} \\
& N_{23}=3 \mathrm{kN}(\mathrm{C})
\end{aligned}
$$

C) Force equilibrium in node 2

Using this expression the following result is obtained:
$\sum F_{x}=0 \quad N_{12} \cos \alpha-4=0$

$$
N_{12}=5 k N(T)
$$

C) Force equilibrium in node 1

(only to be used to check the results)

Computer Based Analysis

Problema_21.dat

Problema 21. Método de los nudos (estado 1)
Esfuerzos axiales

|l। I |
\| I I I
|1111|1111
\square

